Jupiter’s Atmospheric Bulge!

•October 6, 2018 • Comments Off on Jupiter’s Atmospheric Bulge!

Fig. 1. New Juno image from the South pole shows atmospheric bulge on limb.

Juno has produced an amazing photo of Jupiter, which displays a raised belt of dust that surrounds the middle latitudes. This confirms the Cyclic Catastrophism hypothesis that the atmosphere comprises heavy-element particulate aerosols (dust) continuously being released from the Methane Gas Hydrate surface by a fusion reaction at 22° S Latitude ~50,000 km east of the GRS. The particles exit through the GRS, producing the unexpected high temperature and density of the upper atmosphere, but settle to the surface as fast as they are produced and have been accumulating on the MGH surface for many years thereby producing tesseral (E-W) gravity anomalies currently interpreted as ‘flows’ in the ‘interior’. The image reveals the thin but noticeable equatorial bulge on the limb, which is a different color than the rest of the planet.

The dust belt only extends to about 70° S Latitude. Poleward of this limit, the blue southern ocean is visible, due to the melting of the Methane Gas Hydrate surface layer by the energy of the 5 MeV helion torus which produces the far UV helion Lyman forest auroral oval.

Doth not wisdom cry and understanding put forth her voice?

Solving a Cosmic Conundrum

•September 29, 2018 • Comments Off on Solving a Cosmic Conundrum

Fig. 1. TW Hydrae proto-planetary disk around a proto-star with planets already present.

A new study, using the European Southern Observatory, presents evidence overthrowing another long held assumption concerning the formation of planetary systems – that the terrestrial planets accumulated from clouds of dust surrounding the young star. The work was accomplished by astronomers led by Carlo Manara of the European Southern Observatory in Munich, Germany,

Using Atacama Large Millimeter Array (ALMA), a radio observatory in the Atacama Desert in Chile, to penetrate obscuring dust, the group has compared the masses of several hundred different protoplanetary disks around young stars between 1 million and 3 million years old to the masses of confirmed exoplanets and exoplanetary systems around older stars of equivalent size. The disk masses were often much less than the total exoplanet mass—sometimes 10 or 100 times lower.

Although such findings have been reported before for a few star systems, the study is the first to point out the mismatch over several hundred different systems. “I think what this work does is really set this as a fact,” Manara says.

How Does this Relate to Jupiter?

This work makes clear that the terrestrial planets in our system, and all other systems cannot possibly have formed from the scant planetary disks around the young star. The solution to this conundrum is in dozens of posts on this site. That is, the giant planets are formed in the cold recesses of Large Dark Nebulae, where the full range of heavy elements in dust particles, the surfaces of which act as catalysts for the formation of molecules and crystals, become encapsulated in highly deuterated Methane Gas Hydrate clathrate bodies at < 50 K.  These giant planets form before the central proto-star ignites. For example, Figure 1 from ALMA shows a proto-star TW Hydrea, in which fusion has not yet begun, surrounded by a proto-planetary disc in which two giant planets are already present. Similarly, a high resolution study of the Cl Tau planetary disk reveals four giant planet gaps surrounding a two million-year-old proto-star.

The original solar system was only the four giant planets comprising methane gas hydrate clathrate with the full range of heavy elements. The only hydrogen and helium in the atmosphere of Jupiter is a small amount that has been released from its solid, highly deuterated, low density, Methane Gas Hydrate by a fusion reaction left behind by the impact, 6,000-years BP, out of which (proto) Venus was born.  This event demonstrated how all terrestrial planets, including Mars and Earth were formed (Mercury was the original core of Mars, which left permanently in 687 BC). These impacts were exponentially enhanced by the fusion explosion of massive amounts of deuterium which continues to this day. The nominal composition of MGH is (CH4)4(H2O)23, thus Jupiter is ~85% water by mass, explaining very simply why planets like the Earth are covered with water and why all the giant planets have massive amount of methane in their atmospheres. See Juno – Evidence of a Solid Jupiter  by John Ackerman.

The molal levels of Hydrogen and HElium were ‘measured’ by the Galileo atmospheric probe using index of refraction of samples, assuming they were the only significant gases in the atmosphere, therefore the measurement is was not valid.  The concentration of deuterium , (2.1 ± 0.4) 10−5, measured by (SWS) on the Infrared Space Observatory (ISO) does not include that encapsulated in the MGH, the fusion of which is responsible for the excess luminosity, wind bands, and powerful magnetic field of Jupiter. The proposed high deuterium content of the giant planets suggests that the initial fusion reaction in the Sun, which formed in the same Large Dark Nebula, was not the fusion of four protons to form a helium nucleus plus two protons as currently believed, since the reaction of D + H -> 3He++ + 4.98 MeV, now taking place on the surface of Jupiter, would have occurred at a much lower temperature.

Einstein On Epistomology of Science (annotated)

Concepts that have proven useful in ordering things easily achieve such an authority over us that we forget their earthly origins and accept them as unalterable givens. Thus they come to be stamped as “necessities of thought,” “a priori givens,” etc. The path of scientific advance is often made impassable for a long time through such errors. For that reason, it is by no means an idle game if we become practiced in analyzing the long commonplace concepts [gas giants, solar system 4.6 years old] and exhibiting those circumstances upon which their justification and usefulness depend, how they have grown up, individually, out of the givens of experience. By this means, their all-too-great authority will be broken. They will be removed if they cannot be properly legitimated, corrected if their correlation with given things be far too superfluous, replaced by others if a new system can be established that we prefer for whatever reason. (Einstein 1916, 102)


The Shape of Jupiter

•September 21, 2018 • Comments Off on The Shape of Jupiter

Fig. 1 Jupiter plume (Juno) 6000 BP

Fig. 2 900 AD

Fig. 3 Mass Ejection Ceased 1935

Figures 1, 2, and 3 give a brief history of the impact plume left behind on Jupiter after the birth of Venus in 6,000 BP. Figure 2 is a drawing in an Arabic document from 900 AD labelled “having the nature of Jupiter”. Figure 3 is a plot of the rapid monotonic slowing of the rotation of Jupiter, which suddenly ceased when the fusion reaction was no longer sufficiently powerful to eject mass (angular momentum) into space. The rotation then sped up for thirty years as the inflated atmosphere contracted and has now settled into the same rate measured by its magnetic field signature.

The oblateness of Jupiter and Saturn were discussed in a previous post. They are calculated using the polar and equatorial diameters at the cloud-tops. The difference of these two diameters in modern times is not great enough that the planet appears oblate in NASA images. However, in the 1660s, 275 years before the rotational slowing occurred, Giovanni Cassini, one of the earliest astronmers to telescopically observe Jupiter, wrote that Jupiter was ‘oblate‘. These data points are the basis of the Cyclic Catastrophism view of Jupiter.

.Jupiter’s Gravity

The Juno probe has generated a much more accurate record of Jupiter’s shape. A NASA computer model of the expected internal mass distribution of Jupiter based on the gas giant hypothesis assumes the planet is spherically and hemispherically symmetric. The N-S radial distribution of mass is expressed by even zonal harmonic coefficients J2 , J4 , J6 , J8 etc. If Jupiter were a ‘gas giant’ the Juno data should produce values of these coeffients which are very small. However, two different values found are J4 = -586 and J6 = 34.4.  Based on these deviations Juno scientists concluded that “atmospheric and internal dynamics can produce small density perturbations that result in a more complex gravity representation”. The “atmospheric dynamics” are related to the colored wind bands visible in photographs of Jupiter (the origin of which cannot be explained in the ‘gas giant’ hypothesis). ‘Internal dynamics’ refers to motions within a hypothetical liquid, electrically conducting hydrogen interior, but this has been discounted by  by the gravity data (Giullot, Hubbard et al.)”We find that the deep interior of the planet rotates nearly as a rigid body, with differential rotation decreasing by at least an order of magnitude compared to the atmosphere.” This amounted to a major concession by the principle ‘gas giant’ theorists because the data from Juno were expected to reveal the presence of a ~25-earth-mass rocky-iron solid core , a crucial aspect of the ‘gas giant’ hypothesis. One last-gasp explanation for this is that the rocky-iron core has ‘dissolved’ in the hot hydrogen/helium interior, thought to be 25,000 K based on the surface temperature. The current academic view is that Jupiter’s atmosphere is at least 3,000 km deep.


Cyclic Catastrophism explains the unexpected values in a completely different way. The important aspects concerning the measured gravity explanation are:

(a) Consistent with rigid body finding, Jupiter and the other giant planets are highly deuterated, solid, low density Methane Gas Hydrate (MGH) planets that formed cold (< 50 K) in a Large Dark Nebula where deuterium is known to be concentrated and methane gas hydrates form readily.

(b) MGH is a clathrate which physically (not chemically) encapsulates all the heavy elements and molecules (e.g. CH4) inside cages comprising twelve or more water molecules, nominally (CH4)4(H2O)23 Thus Jupiter is ~85% water by mass.

(c) Impacts on the giant planets trigger fusion reactions of the deuterium and protons at the impact sites, as demonstrated by the emission spectra of many heavy elements in 1994 by the impacts of Shoemaker-Levy 9.

(d) Fusion reactions left behind on its solid surface, such as the one 6,000-years BP out of which proto-Venus was born, can burn for thousands of years demonstrating the enormous deuterium content and explaining the ubiquitous presence of methane in the atmospheres of all four giant planets. Little deuterium is measured in the atmosphere because it is consumed in the fusion reaction.

(e) The heat of the fusion reaction on the surface of Jupiter at the proto-Venus impact site, approximately 700-km below the cloud-tops,~50,000 km east of the Great Red Spot is currently releasing the complete range of known elements from the MGH, which form solid particle aerosols as they rise, cool and exit from the Great Red Spot. These comprise the colored clouds which obscure Jupiter’s surface at mid latitudes, currently imagined to be ammonia ice.

(f) The airborne heavy aerosols exit through the Great Red Spot and form an elevated belt around Jupiter at latitudes centered on the Great Red Spot 22° S Lat. This atmospheric belt does not extend to the polar areas. (See Jupiter’s Jiutsu Belt and Oceans)


(g) The heavy aerosols settle to the surface as fast as they are released by the fusion heat where they have been accumulating at least since 1935 (Figure 3). Their distribution is centered at the GRS latitude, 20° S, explaining the negative, pear-shaped, J4 = -586. and to a lesser degree are concentrated below the belts where the surface vortices (not linear winds), constrained by the solid surface of Jupiter, join and the horizontal winds are minimal. 

(h) The J6 = 34.4 is due to the canonical jet stream in the equatoril zone, the high winds of which prevent the heavy aerosols from settling to the surface.

Fig. 4 Possible magnetic field anomalies suggested early in the Juno mission.

The odd numbered tesseral E-W harmonics J3 , J5 , J7, J9  are currently believed by Juno scientists to mark ‘flows’ in the interior since the gas giant hypothesis does not allow permanent features. Now that Juno has completed 15 passes, there is sufficient data lapping in the gravity and magnetic fields to show that the supposed ‘flows’ have not moved or changed shape. This problem is not being directly addressed out in papers, but as more data is collected to fill in between the earlier passes, this problem is becoming more and more difficult for the ‘gas giant’ hypothesis to explain. Cyclic catastrophism explains that these features are huge craters formed by the impacts out of which Venus was recently created (50,000 km east of the GRS) and Mars and the Earth billions of years ago. The impact craters were obviosly huge but would have been filled in by water, but not enough to attain the planetary datum. They would produce both gravity and magnetic field anomalies because of the total mass lost in each event. The dust particles settling on the surface would also have effected the magnetic field in the same zones.

Note: See  Jupiter’s magnetic field.

Layers on Mars Confirm Cyclic Catastrophism

•September 20, 2018 • Comments Off on Layers on Mars Confirm Cyclic Catastrophism

Fig. 1. Mars South Pole Layered Deposits

A paper in Geophysical Research Letters (2017), titled “A subsurface depocenter in the South Polar Layered Deposits of Mars” by J. L. Whitten1 , B. A. Campbell1 , and G. A. Morgan discusses many layers of alternating dust and ice that cover an area the size of Alaska at Mars’ south pole, designated its’ South Pole Layered Deposits (SPLD). Consistent with the uniformitarian assumption of geology, they interpret these layers as a record of the climate history of Mars over at least the last 7–100 Myr.

As discussed in a number of posts on this site, Cyclic Catastrophism explains that Mars was captured in a geostationary orbit of the Earth for 14.4 years and then released into a planetary ‘resting’ orbit for 15.6 years and that this cycle was repeated ninety-nine or one hundred times, (3687 to 687 BC). The most significant aspect of these capture periods relative to the SPLDs, was that during each capture period, called a kalpa in the RgVeda and an inundation in  Egypt, the entire Martian lithosphere was forced to rotate with its north pole facing the Earth, therefore its south pole being exposed to tropical sunlight every day. At each release its lithosphere returned to its normal orientation, allowing the return of normal freezing weather at its south pole.

While the northern hemisphere of Mars was blasting all its life-supporting materials to the Earth, including its water during each kalpa, its south pole became a desert. These repeated cycles produced the equally thick, rythmic deposits of ice and dust at Mars south pole shown in Figure 1.

 “To be ignorant of what occurred before you were born is to remain always a child. For what is the worth of human life, unless it is woven into the life of our ancestors by the records of history?”
― Marcus Tullius Cicero


How Much Helium on Jupiter?

•September 17, 2018 • Comments Off on How Much Helium on Jupiter?

Jupiter has been thought to comprise 90% hydrogen and 10% helium since 1930 due to the detection of spectra of methane and ammonia by Rupert Wildt. His model comprised a solid core of rock and metal surrounded by a layer of ice and a thick gaseous envelope. Based on the elements thought to have been created at the big bang, the composition the gaseous envelope has been proposed to be similar. The Galileo atmospheric probe was designed to measure the mole fraction, used for gases, and the mass fraction of helium, because this was thought to provide information supporting the idea that all hydrogen and helium was created at the big bang, and since it has not, is now claimed to provide information on the way in which planets are formed.

Surprizingly, the instrument designed to determine the mole fraction, called the Helium Abundance Detector (HAD) measured only the index of refraction of samples of atmospheric gases captured in a cell compared with a similar reference cell.  This is stated in the paper published about the measurement   “Helium in Jupiter’s atmosphere: Results from the Galileo probe Helium Interferometer Experiment”, by U. von Zahn, D. M. Hunten and G. Lehmacher.

“Among the seven scientific probe instruments was our HAD instrument. Its approach to measure accurately the Jovian He2 ratio was based on the following considerations: more than 99.5% of the Jovian atmosphere consists of hydrogen and helium. Hence, to a first approximation, we can consider this atmosphere to be a binary gas mixture, for which the mole fraction qHe of helium can be derived from the ratio of refractive indices.”

Note the word “considerations” to disguise its harsher meaning “assumptions”. The instrument was designed based on the assumption that Jupiter is comprised of hydrogen and helium!

An obvious problem with this is apparent in color photographs of Jupiter, which is covered with clouds of various colors, the elements of which they are comprised have never been identified spectroscopically. This means that they are crystalline or dust. If so, they are denser than hydrogen and helium and are falling to the surface as fast as they are produced.

Moreover, cyclic catastrophism claims that the elements comprising them are continuously being released from the Methane Gas Hydrate and that process has continued for thousands of years. The presence of these heavy elements has a major impact on the Helium mole fraction , qHE and the Helium mass fraction Y, below.. The following are the results quoted in the same paper:

“In calculating the HAD results, we presume that the abundance ratio He/H2 is constant throughout the pressure range under study. The value of the measured helium abundance can be expressed numerically in various ways.  These are shown in (7)-(10).

The helium mole fraction qHe, also mixing ratio (equal to the ratio of He atom number density over total atom and molecule number densities), is
qHe = N(He) / (N(H2)+ N(He)+ N(heavy  elements)) = 0.1359 +/- 0.0027   ”

Here we note that the number density of heavy elements at Jupiter is so small that its rigorous inclusion in the calculation of qHe does not affect the value given above. The same cannot be said of the contribution of the mass of heavy elements in calculating Y (see below).

Abundance ratio R of helium (He) relative to hydrogen (H2) (equal to the ratio of He atom number density over H2 molecule number density) is

R = N(He) / N(H2) = 0.157+/- 0 .003

The ratio of helium mass density over the sum of helium and hydrogen mass densities is

m(He) / (m (H2) + m (He)) = 0.238 +/- 0 .005

The helium mass fraction Y (equal to the helium mass densitover the total mass density) is

Y = m (He) /(m ( H2 )+ m ( He ) + m (heavy elements)) = 0.005                 ”


Unidentified Radiation from Jupiter

•September 14, 2018 • Comments Off on Unidentified Radiation from Jupiter

Fig. 1. Fusion reaction flowing to GRS. Reflected energy from NEB.

As explained in previous posts and my latest paper on Jupiter, a powerful fusion reaction on the surface of Jupiter, just below the clouds 50,000 km east of the Great Red Spot, is responsible for all the observed features on the giant planet. The decline in the radiation, which has lasted 6,000 years, is evident in the observable shrinking of the Great Red Spot. The reaction is currently producing an energy equal to the amount of sunlight illuminating Jupiter but the source of this “excess luminescence” remains a mystery to the entire astronomical community.

This should not be the case, since Jupiter is radiating a spectrum never before observed. The reaction, D + P ->  3He++ + 4.98MeV, is currently producing 1030 Helions per second. In laboratory experiments the 3He++ immediately capture one electron becoming 3He+, which is a stable ion often used radioastronomical studies of Large Dark Nebulae as extremely low signals called ‘spin flips’, transitions between ground states. This radiation has never been observed from a single source, only as tiny peaks at wavelengths of 3.46 cm collected over long integration times.

Fig. 2 Jupiter’s UV auroral Ovals and Galilean Satellite footprints

Fig. 3 Helion streams which produce Jupiter’s magnetic field. Blue are the vortical streams deflected to the poles.

The radiation from the electron capture by  3He++  particles has never been observed in laboratory reactions because these particles immediately capture an electrom, resulting in stable 3He+ particles leading to the common incorrect notation  D + P ->  3He+ + γ.  However, because of the massive numbers of these particles being produced on Jupiter and beamed by the strong Coriolis effect on Jupiter, only the outer particles in the vortices reentering the atmosphere at the poles capture electrons forming the far UV radiation at the auroral ovals and some are captured in the fluxtubes of the Galilean moons forming their ‘footprints’. However, the same radiation is coming from larger numbers of 3He++ particles in the primary (yellow) beam, currently known as the inner radiation belt, when they escape into the surrounding space where Jupiter’s electron belts dominate and emit the same spectrum from a diffuse space surrounding Jupiter.

This Logos holds always but humans always prove unable to understand it, both before hearing it and when they have first heard it. For though all things come to be in accordance with this Logos, humans are like the inexperienced when they experience such words and deeds as I set out, distinguishing each in accordance with its nature and saying how it is. But other people fail to notice what they do when awake, just as they forget what they do while asleep.  Heraclitus

Jupiter Dynamo?

•September 10, 2018 • Comments Off on Jupiter Dynamo?

Fig. 1 (a) Jupiter magnetic Field (b) Downward continued field, Moore, K. M. et al

A recent paper in Nature Communications “A complex dynamo inferred from the hemispheric dichotomy of Jupiters magnetic field”, Moore, K. M. et al. begins by stating that Jupiter’s magnetic field is generated by a dynamo in its interior, but adds  “we find that Jupiter’s magnetic field is different from all other known planetary magnetic fields”. The authors claim that although Jupiter’s magnetic field is primarily a dipole the magnetic field in the northern hemisphere (Figure 1 a) displays more of a “non-dipole field” than in the southern hemisphere “with most of the flux emerging from the ‘dynamo’ region in a narrow band in the northern hemisphere, some of which “returns through an intense isolated patch near the equator”. The authors calculate the fields in Figure 1b stating it is the field at 90% of the radius of the planet, that is, 7,000 km below the surface. However, this ‘downward continuation’ of the currently measured field at high elevations assumes there are no field sources between the satellite orbit and the surface of the planet, which is not true on Jupiter.

Fig. 2 Juno orbits

One reason there is more detail in the northern hemisphere is that Juno’s first pass (PJ1) was closer to the north (35,000-km) than the south pole (70,000-km) and due to the precession of the orbit (Figure 2) the perijove (closest point in each orbit) is now (9/7/2018) at 16.6° N Lat. The elevations of the orbit above the poles has been too great to detect the particles which produce the powerful auroral ovals.

Cyclic Catastrophism

As explained in a number of posts on this site, the magnetic fields of the giant planets are completely different from the Earth’s. Jupiter’s magnetic field is generated by a powerful stream (1032/s) of low mass, doubly charged ions called helions ( 3Ne++) circling Jupiter prograde at 17,800 km/s (yellow in Figure 3). The external magnetic field of Jupiter is sixty times more powerful than the field of the Earth because the particles generating it are in space, not shielded by the solid planet. The particles are continuously being generated by a ‘fusion furnace’ at the center of a 6,000-year old impact crater on the surface of Jupiter some 50,000 km east of the Great Red Spot fusing vast amounts of deuterium and protons (D + P -> 3Ne++ + 4.98 MeV) that comprise the solid Methane Gas Hydrate planet.

Fig. 3. Helion streams which produce Jupiter’s magnetic field are yellow. Blue are the vortical streams deflected to the poles which produce the auroral ovals.

The helions’ high velocities and the rapid revolution of Jupiter combine to form a helion vortex which exits the atmosphere forming the Great Red Spot. The stream then combines with the powerful stream of helions circling the planet near the equator, currently believed to be a dangerous nuisance called the ‘Inner Radiation Belt’. The belt was originally thought to comprise electrons, but the Juno JEDI instrument has found that it comprises positive ions. JEDI was not able to identify the helions or determine the direction of their motion because their velocity is too high, therefore NASA scientists assume the particles in the ‘radiation belt’ are ‘mirroring’, travelling both prograde and retrograde as in radiation belts of the Earth.

Above the Great Red Spot, two streams of helions are deflected toward the north and south poles where their powerful impacts produce the constant auroral ovals (blue in Figure 3).

Fig. 4. Turbulence at northern edge of GRS deflects some of the helion flow.

A previous presentation by John Connerney of NASA provided a video of the same magnetic field as the cited paper, which also includes the cloud features on Jupiter. Comparison of the video with Figure 4. shows that the anomalous magnetic field described in the cited article as magnetiic flux  “returns through an intense isolated patch near the equator” is due to the deflection of the counter-clockwise helion motion at the northern edge of the Great Red Spot by an eastward jet stream which produces the turbulence on the northwest . . THis comparison shows that the north edge of the Great Red Spot collides with the eastward jet stream, resulting in a large zone of turbulence to its northwest. This causes a clockwise swirling of the helions at that point, sensed by the MAG instrument as a reversed magnetic field. The main counter-clockwise stream of invisible helions goes upward and impacts the inner belt above the Great Red Spot.

The reduction of the diameter and intensity of the Great Red Spot over the lifetime of the Juno mission 800-days is evidence of the decrease in the power of the fusion reaction and can more accurately be determined by a decline in the strength of Jupiter’s magnetic field during that period. If NASA compares the total magnetic field data from the first Juno pass with the most recent values they will find this decrease and will have to add this to the long list of unexplained observations..