Layered Deposits on Mars

Because priori-Mars and the Earth were mutually engaged in the one hundred encounters, the question arises ‘Is there evidence of one hundred equally thick layers on the surface of Mars?’, – since it was the outer shell of the former priori-Mars.  I am sure that astronauts will eventually discover many instances of such layers once we explore Mars, but based on simple Google searches of Mars images, amazing confirmation of my proposed cyclic catastrophism has already been found in NASA photographs of Mars.  For some reason these tend to be concentrated in the area of Arabia Terra.  The earliest photographs is shown below in Figure 1.   Rather than further explaining the image, I have included below the caption (bold) published with the image, which gives a good idea of its features and the great difficulty that the uniformitarian astrophysicists have in explaining them.

 Many equally thick layers of dust, probably deposited during the one hundred encounters with the Earth, fill this Martian crater.

Many equally thick layers of dust, probably deposited during the one hundred encounters with the Earth, fill this Martian crater.

Figure 1.
“Colorized” subframe of Mars Orbiter Camera image M14-01647 of layered deposits inside an impact crater in Western Arabia Terra. Hundreds of layers can be seen exposed by erosion. The layers are partially covered by dark debris that has filled in topographic lows between the layers. All the layers appear similar in their thicknesses and textures, suggesting they formed by the same process. What formed them?  Perhaps deposition of sediments in water, or ash/dust settling out from the atmosphere. Illumination from the left. Figure courtesy of Malin Space Science Systems/NASA.

The deposits in four craters have been studied, but one image is particularly striking and has has been more painstakingly investigated.  The published article (bold below) explaining the results of studying the image, is exquisitely revealing.
“Ancient Climate Cycles Recorded In Mars Rocks

ScienceDaily (Dec. 5, 2008) – Researchers at the California Institute of Technology (Caltech) and their colleagues have found evidence of ancient climate change on Mars caused by regular variation in the planet’s tilt, or obliquity. On Earth, similar “astronomical forcing” of climate drives ice-age cycles.

Using stereo topographic maps obtained by processing data from the high-resolution camera onboard NASA’s Mars Reconnaissance Orbiter, the Caltech scientists, led by graduate student Kevin Lewis and Oded Aharonson, associate professor of planetary science, along with John Grotzinger, the Fletcher Jones Professor of Geology, identified and measured layered rock outcrops within four craters in the planet’s Arabia Terra region. The layering in different outcrops occurs at scales ranging from a few meters to tens of meters, but at each location the layers all have similar thicknesses and exhibit similar features.

Based on a pattern of layers within layers measured at one location, known as Becquerel crater, the scientists propose that each layer was formed over a period of about 100,000 years and that these layers were produced by the same cyclical climate changes.

In addition, every 10 layers were bundled together into larger units, which were laid down over an approximately one-million-year period; in the Becquerel crater, the 10-layer pattern is repeated at least 10 times. This one-million-year cycle corresponds to a known pattern of change in Mars’s obliquity caused by the dynamics of the solar system.

“Due to the scale of the layers, small variations in Mars’s orbit are the best candidate for the implied climate changes. These are the very same changes that have been shown to set the pacing of ice ages on the Earth and can also lead to cyclic layering of sediments,” says Lewis, the first author of a paper about the work published in this week’s issue of Science.

The tilt of Earth on its axis varies between 22.1 and 24.5 degrees over a 41,000-year period. The tilt itself is responsible for seasonal variation in climate, because the portion of the Earth that is tipped toward the sun–and that receives more sunlight hours during a day–gradually changes throughout the year. During phases of lower obliquity, polar regions are less subject to seasonal variations, leading to periods of glaciation.

Mars’s tilt varies by tens of degrees over a 100,000-year cycle, producing even more dramatic variation. When the obliquity is low, the poles are the coldest places on the planet, while the sun is located near the equator all the time. This could cause volatiles in the atmosphere, like water and carbon dioxide, to migrate poleward, where they’d be locked up as ice.

When the obliquity is higher, the poles get relatively more sunlight, and those materials would migrate away. “That affects the volatiles budget. If you move carbon dioxide away from the poles, the atmospheric pressure would increase, which may cause a difference in the ability of winds to transport and deposit sand,” Aharonson says. This is one effect that could change the rate of deposition of layers such as those seen by the researchers in the four craters.

Another effect of the changing tilt would be a change in the stability of surface water, which alters the ability of sand grains to stick together and cement in order to form the rock layers.

“The whole climate system would be different,” Aharonson says.

However, such large changes in climate would influence a variety of geologic processes on the surface. While the researchers cannot tie the formation of the rhythmic bedding on Mars to any particular geologic process, “a strength of the paper is that we can draw conclusions without having to specify the precise depositional process,” Aharonson says.

“This study gives us a hint of how the ancient climate of Mars operated, and shows a much more predictable and regular environment than you would guess from other geologic features that indicate catastrophic floods, volcanic eruptions, and impact events,” Lewis adds. “More work will be required to understand the full extent of the information contained within these natural geologic archives,” he says.

“One of the fun things about this project for me is that we were able to use techniques on Mars that are the bread and butter of studies of stratigraphy on Earth,” says Aharonson. “We substituted a high-resolution camera in orbit around Mars and stereo processing for a geologist’s Brunton Compass and mapboard, and were able to derive the same quantitative information on the same scale. This enabled conclusions that have qualitative meaning similar to those we chase on Earth.”

California Institute of Technology (2008, December 5). Ancient Climate Cycles Recorded In Mars Rocks. ScienceDaily. Retrieved August 10, 2009, from /releases /2008/12/081204141801.htm”

It is excruciatingly painful to realize the difficulty these ‘budding’ scientists have in interpreting the features in the image.  Of course they have no idea that priori-Mars orbited the Earth one hundred times between 3700 and 700 BC, and that the layers each represent thirty years, not 100,000.  To propose that these deposits spanned a period of 10 million years is ludicrous.  They are obviously all equally fresh.  Moreover, the didactic science-speak, the lack of a more questioning attitude is difficult to accept.  This stuff is being ‘spoon-fed’ to the younger generation, corrupting their view of the world.

The most striking aspect is the determination that there are one hundred  equally thick layers. I have not yet figured out the significance of the groups of ten layers, but it is possibly a clue to some details of the events during the Vedic Period.  I maintain that each of these layers was emplaced during a fifteen-year encounter with the Earth during the Vedic Period (3700 to 700 BC) due to the continual eruption of every volcano on priori-Mars during these periods.  Thus they comprise tiny spheres of mafic rock with high iron content  which hardened as it was sprayed into the air from many lava fountains on the surface of priori-Mars.  Microscopically, they are the same as chondrules, from which the most common type of meteorites derive their name, chondrites.  In fact the entire surface of the ‘Red Planet’ is covered with these tiny spheres.

The statement that Mars tilt changes with a period of 100,000 years comes from calculations based on recent observations.  But conventional astyrophysicists have no idea that Mars has only been in its current orbit for 2700 years. At least Lewis notes the apparent contradiction between the evidence of catastrophism and the supposed regularity that produced the equally spaced deposits.  He is correct in that additional work is required, but the answer is to accept  cyclic catastrophism – too much of a stretch for academia.

~ by Angiras on August 13, 2009.

2 Responses to “Layered Deposits on Mars”

  1. Amos,
    Thanks for your kind words. It is nice to know that my articles are being read,
    especially by educated people with open minds. My theses stretch most minds
    beyond the ‘belief horizon,’ but that is where the most exciting ideas reside.
    The beauty of the internet is that it reaches around the world, even to Jerusalem!
    Another originally unexpected result is that so many people have taken the time to
    enter their particular knowledge, regardless of how obscure, thereby creating rich
    knowledge base. I hope to visit Jerusalem someday soon.

  2. Dear John Ackerman,
    Thanks again for the beautiful work you keep up. It is in true Velikoskian traditon of piecing together, convincingly, data to support your thesis, and briliantly presenting it.
    best regards, Amos Rubin, Jerusalem

    P.S. Why is the page so dark ?

Leave a Reply

%d bloggers like this: